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Interoperator Test for Anatomical Annotation of
Earprints

ABSTRACT: As part of the Forensic Ear Identification (FearID) research project, which aims to obtain estimators for the strength of evidence of
earmarks found on crime scenes, a large database of earprints (over 1200 donors) has been collected. Starting from a knowledge-based approach
where experts add anatomical annotations of minutiae and landmarks present in prints, comparison of pairs of prints is done using the method of
Vector Template Matching (VTM). As the annotation process is subjective, a validation experiment was performed to study its stability. Com-
paring prints on the basis of VTM, it appears that there are interoperator effects, individual operators yielding significantly more consistent results
when annotating prints than different operators. The operators being well trained and educated, the observed variation on both clicking frequency
and choice of annotation points suggests that implementation of the above is not the best way to go about objectifying earprint comparison.
Processes like the above are relevant for any forensic science dealing with identification (e.g., of glass, tool marks, fibers, faces, fingers, hand-
writing, speakers) where manual (nonautomated) processes play a role. In these cases, results may be operator dependent and the dependencies
need to be studied.

KEYWORDS: forensic science, earprint identification, interoperator effects, anatomical annotation, template matching, classification

In recent years, expert court testimony on earmarks found at
crime scenes relied on the assessment of expert witnesses on the
biological uniqueness of characteristics found on the marks, cf.
(1). Examples of these are overall shape and size, and details
such as Darwinian tubercles, creases, moles, piercings, or scars.
Because of a relative lack of scientific basis, and the subjective
nature of the assessments by the experts, the reliability of earmark
identification has been under fire. A good review article on the
(lack of) scientific research up to 1999 with respect to earmark
identification can be found in (2). This has, e.g., resulted in re-
jection of earmark evidence in the State versus Kunze case in the
United States, see (3), and the calling of a retrial in the Regina
versus Mark Dallagher case in the United Kingdom; see (4) and
(5).

To solidify the scientific basis for earprint/earmark identifica-
tion, the EU-financed Forensic Ear Identification (FearID) project
was started in nine institutes, including police academies, univer-
sities, The Netherlands Forensic Institute, and two commercial
partners, over Italy, The Netherlands, and the United Kingdom.
The project aims at obtaining estimators for the strength of evi-
dence of earmarks found on crime scenes and the development of
methods to match and classify earprints. The ultimate goal of this
is verification (one to one matching) and individualization (one to
many matching). In the three countries, a training database has
been gathered of 1227 donors, donating three left and three right
earprints each. Next to this, an operational system was developed
allowing for scanning and storing of earprints and that may pro-
cess them in different ways.

An example of this processing is that a user, from here on op-
erator, adds a polyline to the digitized earprint image following

the imprint of the ear. From this a connected structure is deter-
mined that is supposed to represent the imprint, and which is
referred to as a superstructure. An example is given in Fig. 1. On
the basis of this superstructure, further analysis is performed using
various image-processing techniques. Results of this analysis can
be found in (6).

Another example of manual annotation is that of anthropological
experts adding anatomical annotations of so-called minutiae and
landmarks present in prints. On the basis of this knowledge-based
approach, comparisons of pairs of prints are then made. The an-
thropological workpackage of the FearID project decided on a set of
possibly present minutiae and landmarks, laid down in De Conti et
al. (7), and the prints gathered in the database were annotated ac-
cordingly. In this way, an effort was made to objectify (necessarily
subjective) expert witness opinions, and lay a basis for classification
of earprints on the basis of biological knowledge (as opposed to
information acquired by (semi)automatic image processing).

As both clicking of initial axes and anatomical annotation of
earprints are subjective processes, the question arises how much
the output of the process depends on the operator performing the
manual annotating. An experiment was set up to test for these
interoperator effects. For polyline clicking, unpublished data
showed no significant operator effects. The paper at hand studies
interoperator effects for anatomical annotation as in Fig. 2.

The structure of the report is as follows: in the next section a
description of the experiment is given. Here, we describe in turn

� the data collection;
� the process of anatomical annotation;
� the performance measure used (equal error rate);
� the method used to compare annotated prints (vector template

matching); and
� the statistical technique to analyze the results (binary logistic

regression).

In the ‘‘Results’’ section, first annotation frequencies over
different operators are compared, after which the analysis of
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the data with respect to interoperator effects is presented. Finally,
conclusions are drawn on implications of the results.

Description of the Experiment

Data Collection

To test for differences in annotation behavior between opera-
tors, a collection of 135 earprints was presented to three operators
from the participating countries (Italy, The Netherlands and the
United Kingdom). In each of the countries, the operator would
annotate the whole collection, leading to a total number of
3 � 135 5 405 anatomically annotated prints.

To allow for testing for eventual effects of factors like donor
country, number of donors per country, number of prints per donor
(i.e., safeguard the representativeness of the sample), the collec-
tion was built up as follows: it consisted of 45 different prints,
always three different prints from 15 donors in total. The prints
were all repeated for three times, that is, each operator annotated
the same identical print for three times. This repetition of identical
prints was undertaken to test whether different operators are in-
ternally consistent compared with consistency among different
operators.

The 15 donors, five donors from each of the participating coun-
tries, were taken from an earlier validation experiment undertaken
to test the stability of the standard operating procedure for the

FIG. 1—Example: original print, clicked polyline, and calculated superstructure.

FIG. 2—Example: earprint with superstructure and anatomical annotations.
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taking of earprints as formulated by the project; see Johnson (8).
The collection of 135 prints was offered in a fixed order, consist-
ing of three consecutive blocks of the same 45 prints, each time
put in a random order.

Thus, to keep the sample as representative and balanced as
possible, and at the same time allow investigation of inter- and
intraoperator effects connected to the annotation of prints, the
sample was divided up along the following lines:

1. the country from which the donor was taken (three possibil-
ities);

2. specific donor: given any country, five donors were selected;
3. earprint number: given any donor, three prints were selected;

and
4. specific annotation of a particular earprint: three annotations

by any operator per print.

The above, for example, allows to test whether interoperator
effects are different for donors from different countries. The sam-
ple is summarized in Fig. 3.

Anatomical Annotation of Earprints

After print collection, earprints were annotated in a three-stage
process for which FearID’s Earprint Storage and Analysis System
was used. The first stage was carried out at the collection sites
Centrex NTC (U.K.), LSOP (The Netherlands), and Padova Uni-
versity (Italy). Stages two and three were carried out independent
of the collection site, in a different country from the site where
they were collected. All annotations were based on a standard set
and agreed upon by the anthropological analysis group that con-
sisted of Glasgow University, Leiden University Medical Centre,
and Padova University.

The first annotation stage consisted of operators clicking the
initial axis of the superstructure or super-helix structure used to
represent the visible features of the ear palm (or pinna); see Figs. 1
and 4.

The superstructure is a spiral-like structure, starting at the
anthelix, or anti-helix, and ending at the lobule, chosen as appro-
priate for subsequent computerized analysis of print patterns. The
initial axis is a piecewise linear path linking points placed along
the superstructure, with additional specific points representing the

lowest point of the lobe and, in the anthelix area, apex and in-
dentation markers, indicating the number and extent of anthelix
branches; see Fig. 5.

Only apex and indentation markers and the lowest point of lobe
were included in the point matching set of a print, as they were
linked to specific locations in the earprint while the points along
the superstructure were less specific.

During the second stage of print annotation, operators added
print transition lines. These indicate the transition between print
segments that one encounters when following the superstructure
path, see Fig. 6, and contain information about superstructure
segmentation.

In the third and final stage, the anthropological analysis group
annotated anatomical features, minutiae, landmarks, and some
other characteristics. Here

� an anatomical feature refers to anything to be seen in a print,
including gross features, but also other characteristics like, for
instance, a Darwinian tubercle or a crease. It is a very general
term,

� minutiae are characteristic anatomical details that may match a
print uniquely to a particular live ear, such as, for instance, a
mole, a Darwinian nodule, a piercing, a scar, or a particular
crease formation at a particular position, and

� the term landmark is used for a particular predefined point on a
gross feature, or on the outline of a lacuna, unlikely to change
through time.

FIG. 3—Overview of the data collection.

FIG. 4—Initial axis of earprint superstructure.
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The main categories were divided up as follows:

� Anatomical features and minutiae:
1. Mole
2. Knob of helix
3. Notch of helix
4. Darwinian tubercle (nodule and enlargement)
5. Piercing
6. Crus of helix posterior

� Landmarks:
1. Apex of scapha

2. Apex of anterior notch
3. Apex of intertragic notch

� Other characteristics:

1. Skin complexion and detail
2. Scar
3. Hairstyle
4. Glasses
5. Crease
6. Pimple

Further subdivision along these lines and inclusion of features
from the first and second annotation stage led to a total of 104
features used in the subsequent analysis. A full description of the
instructions for marking minutiae and related landmarks in ear-
prints is given in (7).

Performance Measure

We turn to the measure used to test the performance of the
system. With respect to evidential value of earprint comparisons,
there are two key concepts: that of verification, or one to one
comparison, and that of individualization, or one to n comparison.
Of the corresponding performance measures, Equal error rate
(ERR) and hitlist behavior, we shall further concentrate on the
first, Equal error rate, to express the performance of the system
given different circumstances with respect to operators.

A verification system is a classification system with two classes
of outcomes: matching (or positive or acceptance) and nonmatch-
ing (or negative or rejection). Given the features in a system, for
any comparison of two prints, a single value is constructed opti-
mally summarizing the matching information. Classification takes
place according to whether the outcome does or does not exceed
some threshold t.

Common performance parameters with this type of system are
the probabilities of making a wrong judgment, expressed in the
false rejection rate (FRR) (cases in which the system declares a
nonmatch in case of matching prints) and false acceptance rate
(FAR) (cases in which the system declares a match in case of
nonmatching prints). As the FRR and FAR are threshold-depend-
ent, we concentrate on the EER, which is the (common) prob-
ability of misclassification starting from the threshold t for which
FAR(t) 5 FRR(t). As an example of this, we depict the end results
of the project based on three different feature extraction methods,
including the current comparison, cf. (6), in Fig. 7.

Vector Template Matching (VTM)

Depending on the nature of a particular earprint feature, oper-
ators used either a point, line or area marker to highlight land-
marks and minutiae. Point minutiae were included in the point
matching set of a print. Line and area landmarks were processed to
extract salient points such as extremities and bifurcation points of
creases and barycenters of papules, thus reducing annotated line
and area features to characteristic points as well. The coordinates
were stored for each print, including the feature names (label), and
formed the earprint point pattern used for matching earprints. The
patterns were represented as lists of the form

P � p1; p2; . . . pi; . . . pNP
½ �;

FIG. 5—Anthelix points.

FIG. 6—Earprint transition lines and print orientation vector.
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where list item pi ¼ hxðPÞi ; y
ðPÞ
i ; ‘

ðPÞ
i i gives the Cartesian coordin-

ates of a point with respect to some arbitrary axis derived from
print digitization, together with a label indicating the nature of the
point. The ordering of items in the points list is arbitrary.

The coordinates of points in different prints from the same ear
will differ because of having different origin and rotation, so the
comparison mechanism needs to be invariant to translation and
rotation. Our numerical analysis is based on a method called VTM.

As described, each print has a template consisting of labeled
points representing annotated earprint landmarks and minutiae,
distinguished into different classes. Prints are compared by as-
sessment of the similarity between their templates.

In the case of prints originating from the same ear, the same
labels are expected to turn up, although because of translation and
rotation of the ear not being on the same coordinates. Comparison
of the templates takes place in the following way. For any vector in
print 1, all vectors in print 2 are determined sharing the same, ana-
tomically meaningful, labels. In Fig. 8, this would, for example,
mean starting at the vector with the A and B in print 1, and com-
paring this with the corresponding vector found below in print 2.

The angle between the vectors, in this case c. 261, is determined
and stored. In order to minimize comparison of vectors that do
have matching labels but do not correspond, the ratio of the length
of the vectors—which is anatomically supposed to be close to
one—is supposed to be inside the fixed interval (0.90; 1.11),
which is the result of independent training of the method. The

above is done for all combinations of vectors from prints 1 and 2
sharing the same labels and approximate length, and a histogram
is made of the observed outcomes.

In the case of two matching prints, for the histogram this will
result in a peak near the actual rotation of the one print with re-
spect to the other, and low variation in outcomes. In the case of
nonmatching prints, the histogram is expected to be noisy; see
Fig. 9.

Two point patterns are shown to be similar by assessing the
dominant mode of the distribution of the angles between pairs of
vectors from the two patterns. For this, for any VTM comparison,
nine features were extracted from the resulting histogram:

1. N, total number of comparisons of vectors in the procedure;
2. Std, standard deviation of the resulting histogram;
3. IQR, inter quartile range of the resulting histogram;
4. Peak, peak value of the resulting histogram;
5. Peak/N;
6. Peak/Std;
7. Peak/IQR;
8. Ntot, total number of possible comparisons of vectors in the

VTM procedure, not considering either labels or vector length
ratio; and

9. N/Ntot.

For details about the implementation and training (with respect
to histogram bin width and vector length ratio) of the VTM meth-
od, see (9). The analysis of the outcomes is based on the statistical
method of binary logistic regression (BLR).

FIG. 8—Example of two labeled point patterns, differing only in translation
(261).

FIG. 7—Plot depicting false acceptance rate (FAR) versus false rejection rate
(FRR) resulting from the analysis of the Main sample of the forensic ear
identification (Fear 1D) project. Results are on the basis of three feature ex-
traction methods. The equal error rate (c. 4%) can be seen at the intersect of the
curve and the line.

FIG. 9—Example of histograms corresponding to a pair of matching prints (on the left) and a pair of nonmatching prints. In the case of matching prints, we see a
compact histogram, in this case around rotation angle 0. In the case of nonmatching prints, the histogram is more ‘‘noisy.’’
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Logistic Regression

We aim to obtain a score function that minimizes the number of
features used, but is still close to optimizing the EER. The reasoning
behind this is that the nine VTM parameters are all highly correlat-
ed, and there is a risk of overtraining of the system on the data. The
analysis of the outcomes is based on the statistical method of Binary
Logistic Regression, or BLR, cf. (10). BLR is used rather than linear
discriminant analysis as normality assumptions on the features are
violated and some features are discrete, in which case BLR outper-
forms linear discriminant analysis. Based on the training data, the
BLR method extracts a linear combination of certain of the used
features, optimally separating pairs of matching from pairs of non-
matching prints.

For reasons of symmetry, we added the inverse values and nat-
ural logarithms to the mentioned features, thus ending up with 27
features per comparison of prints. However, no more than one in-
stance of the same feature was used in the end model for the score
function: for example, either N, 1/N, or log N. Comparisons for
which the VTM algorithm led to N 5 0 or N 5 1 were filtered out
as in that case the histogram lacks informative value. (Note that in
practice, this is what one would do as well.) Approximately 6900
comparisons (1.1% of the total number) were filtered out this way.

For the training sample, there were a total of circa 5.3 million
possible comparisons of nonmatching prints and 3084 of match-
ing prints, on the basis of which the BLR score was trained. Be-
cause of filtering of bad, double, and empty prints, as well as
comparisons with VTM results for which No2, the number of
valid comparisons further decreased to 2727. As BLR is not robust
against differences in size between separable groups, four non-
overlapping subsamples of around 4700 (filtered) combinations of
nonmatching prints were taken and trained against the fixed sam-
ple of (all) 2727 matching prints. In this way, four training sam-
ples of matching and nonmatching prints were made, with
noncorrelated nonmatching parts.

The BLR analysis was performed such that first the system of
27 features was trained, using low thresholds for removal of fea-
tures. For this, we used the SPSS module for BLR, Backward: LR
method, with the parameter settings ‘‘probability for stepwise
entry and removal’’ both at 0.01. The outcomes for the four dif-
ferent training samples were compared. This led us to one
‘‘steady’’ feature of the original nine, namely peak/IQR. Besides,
features connected to N, Std (in the case of N: 1/N and log(N))
regularly emerged, as well as log(N/Ntot). Training the system on
the basis of all of these features together, an EER of 6.8% was
achieved for the model, where the BLR method for all four train-
ing samples removed the features connected to Std. Trying out the
possible permutations of remaining features, it turned out that
Peak/IQR and ln(N/Ntot) together led to a steady EER (over all
four training samples) of 6.6%.

As we aim for simplicity of model and it leads to no significant
loss in EER it was decided to further use the discriminant score

D ¼ 1=ð1þ expð�ð14:7þ 0:017Peak=IQRþ 3:1 lnðN=NtotÞÞÞÞ:
The implementation and training (with respect to histogram bin

width and vector length ratio) of the VTM method, as performed
in Kieckhoefer (9), were on the basis of this score.

Results

Annotation Frequencies

From here on, in box plots, the boxes denote the inter quartile
range, their middle lines denoting the median. Whiskers show the

distance from the end of the box to the largest and smallest ob-
served values less than 1.5 box lengths from either end of the box.
Circles denote outliers (between 1.5 and three box lengths from
the end of the box), and stars extreme points (more than 3 box
lengths from the end of the box).

We start by looking at annotation frequencies over the three
operators. As there were 104 possible labels that could be used per
clicked point, it is not very interesting to study frequencies per
label (as they are usually 0), so we concentrate on the total number
of annotated points per print. First, we present the results per
donor, divided up as to operator (for each donor, all three oper-
ators annotated nine prints); see Fig. 10.

The above, summarized for all donors, is combined in Fig. 11.
We see substantial differences in clicking frequency between

operators, operator one annotating on average around 12 points
per print, whereas operator three is annotating 17. Although there
is also an overlap between the boxes, the differences are signifi-
cant. This is formalized by a two-way analysis of variance, start-
ing from three (per operator) times 15 (per donor) samples of size

FIG. 10—Box plots of total number of clicked features for 10 donors (on the
x-axis) by different operators.

FIG. 11—Box plots of total number of clicked features per operator.
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three (mean number of clicked features per print of a certain donor
by a certain operator).

Interoperator Effects

We study the discriminating power of the generated outcomes,
that is, the EER performance of the BLR model. To this, we divide
the possible comparisons between annotated prints into three
groups:

1. comparison of pairs of annotated versions of the same ear-
print;

2. comparison of pairs of different prints from the same ear; and
3. comparison of pairs of prints originating from different donors.

Distances between outcomes for matching and those of non-
matching prints are supposed to increase among the groups, and
interoperator effects will be informative for groups 1 and 2 only.

In (9), the discriminating power of the BLR outcomes on the
basis of the VTM method was summarized in an EER of 6.6% for
comparisons of controlled prints. This means that there is an out-
come above which precisely 6.6% of the nonmatching, and below
which precisely 6.6% of the matching comparisons end up. Here,
by the term ‘‘controlled prints,’’ we mean lab quality prints, taken
following the standard operating procedures laid down in Johnson
(8), and per donor annotated by the same operator.

Regarding the discriminating power of the BLR outcomes in
the current experiment, we compare discriminant scores that
emerge for the groups 2 and 3. To resemble a real-life scenario,
for group 2 we use only prints clicked by different operators and
illustrate the process in Fig. 12. Here, on the left approximately
38,000 nonmatching comparisons are gathered into a box plot; on
the right, 1200 and 600 matching ones are gathered, respectively,
annotated by different operators and identical ones.

The picture illustrates that whereas BLR outcomes for matching
and nonmatching comparisons seem to be well separated with the
same operator annotating the matching prints, with an EER of
20%, matching prints denoted by different operators are much less
easy to separate, with an EER of 29%. We note that in a real-life
scenario, different operators will be annotating the prints, so here
the 29% is the percentage of interest.

Next, we look at the interoperator effects for matching com-
parisons. In Fig. 13, box plots are depicted describing the (BLR
based) discriminant scores encountered when comparing identical
prints (group 1), either annotated twice by the operator from Italy,
The Netherlands, or the United Kingdom, or by two different op-
erators. The latter (outcomes for identical prints annotated by dif-
ferent operators) is on the basis of C. 1200 outcomes. Boxes per
operator are on the basis of 135 outcomes.

In Fig. 14, box plots are depicted describing the discriminant
scores encountered when comparing different prints from the
same ear (group 2) or from different ears (group 3). For the first
group, first box plots for outcomes are given with the same op-
erator annotating both prints, and then (in the fourth box) with
mixed operators. The fifth box depicts outcomes for comparisons
of prints of nonmatching ears. Boxes per operator are again on the
basis of 135 outcomes, for mixed operators annotating the same
ear on basis of 207 comparisons.

The EER of 20% corresponds to the difference between the
first, second, and third box plot versus the fifth, the EER of 29% to
that between the fourth box plot versus the fifth. In both cases
shown in Figs. 13 and 14 , the interoperator effect is quite clearly
visible.

Conclusions

The objective of the validation experiment at hand was to study
the stability aspects of manual anatomical annotations that, like
minutiae in fingerprints, function as the starting point for com-
parison of earprints. In our analysis of the main FearID database,
on the one hand the situation was such that print gathering took
place by the same one or two operators per country. Moreover,
two manual annotation procedures formed the basis of the com-
parison process for which the operators per donor were not varied.

FIG. 12—Comparison of (binary logistic regression based) discriminant
scores for pairs of prints, starting from (on the left) different ears, and (on the
right) different prints from the same ear, clicked by different operators.

FIG. 13—Box plots describing the (binary logistic regression based) dis-
criminant scores encountered when comparing identical prints (group 1), ei-
ther annotated twice by the operator, the three participating countries (box
plots one up to three), or by two different operators (box plot four).
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The stability of anatomical annotation that the current paper is
about is quite disappointing. Equal error rates are significantly
increasing (from 20% to 30%) when one starts looking at prints
annotated by different operators. Hence, the results reported in
Alberink et al. (6) and Kieckhoefer et al. (9) will not hold in
practice, as in a real-life scenario different operators will be an-
notating the prints—and should be, as the aim is to objectify the
current practice of (subjective) print comparison.

In the above, only a small sample of 15 donors was involved,
with prints of worse quality than those in the FearID main sample:
EER results that should be comparable read as 20% for the current
test and 6.6% for the analysis of the FearID main sample. How-
ever, the data suggest that the end results on the FearID main
sample using VTM comparisons are in reality, in which operators
vary, worse than reported on the basis of the analysis of the main
sample. Operator variation on both clicking frequency and choice
of annotation points themselves suggests that implementation of
the above is not the best way to go about objectifying earprint
comparison.

It is important to keep processes like these in mind for any fo-
rensic science that deals with identification, be it of glass, tool
marks, fibers, faces, fingers, handwriting, or speakers, where man-
ual (nonautomated) processes play a role. For operator effects in
fingerprint recognition, see, e.g., Evett et al. (11). In cases like

these, the results may well be operator dependent and these de-
pendencies need to be studied.
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